Three-microphone probe bias errors for acoustic intensity and specific acoustic impedance.
نویسندگان
چکیده
In acoustic intensity estimation, adding a microphone at the probe center removes errors associated with pressure averaging. Analytical bias errors are presented for a one-dimensional, three-microphone probe for active intensity, reactive intensity, and specific acoustic impedance in a monopole field. Traditional estimation is compared with the Phase and Amplitude Gradient Estimator (PAGE) method; the PAGE method shows an increased bandwidth for all three quantities. The two- and three-microphone methods are compared experimentally, showing reduced bias errors with three-microphone PAGE for active and reactive intensity, whereas using two microphones is preferred for specific acoustic impedance.
منابع مشابه
Bias error analysis for phase and amplitude gradient estimation of acoustic intensity and specific acoustic impedance.
Sound intensity measurements using two microphones have traditionally been processed using a cross-spectral method with inherent error in the finite-sum and finite-difference formulas. The phase and amplitude gradient estimator method (PAGE) has been seen experimentally to extend the bandwidth of broadband active intensity estimates by an order of magnitude. To provide an analytical foundation ...
متن کاملComparison of multimicrophone probe design and processing methods in measuring acoustic intensity.
Three multimicrophone probe arrangements used to measure acoustic intensity are the four-microphone regular tetrahedral, the four-microphone orthogonal, and the six-microphone designs. Finite-sum and finite-difference processing methods can be used with such probes to estimate pressure and particle velocity, respectively. A numerical analysis is performed to investigate the bias inherent in eac...
متن کاملA MEMS Capacitive Microphone Modelling for Integrated Circuits
In this paper, a model for MEMS capacitive microphone is presented for integrated circuits. The microphone has a diaphragm thickness of 1 μm, 0.5 × 0.5 mm2 dimension, and an air gap of 1.0 μm. Using the analytical and simulation results, the important features of MEMS capacitive microphone such as pull-in voltage and sensitivity are obtained 3.8v and 6.916 mV/Pa, respectively while there is no...
متن کاملAn Eigenvalue Based Acoustic Impedance Measurement Technique
A method is developed for measuring acoustic impedance. The method employs a one-dimensional tube or duct with excitation at one end and an unknown acoustic impedance at the termination end. Microphones placed in the tube are then employed to measure the frequency response of the system from which acoustic impedance of the end is calculated. This method uses fixed instrumentation and takes adva...
متن کاملComparison of methods for processing acoustic intensity from orthogonal multimicrophone probes.
One design for three-dimensional multimicrophone probes is the four-microphone orthogonal design consisting of one microphone at an origin position with the other three microphones equally spaced along the three coordinate axes. Several distinct processing methods have been suggested for the estimation of active acoustic intensity with the orthogonal probe; however, the relative merits of each ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 143 2 شماره
صفحات -
تاریخ انتشار 2018